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Abstract

In this research, the incorporation of material anisotropy is proposed for the large-deformation analyses of highly
flexible dynamical systems. The anisotropic effects are studied in terms of a generalized elastic forces (GEFs) deriva-
tion for a continuum-based, thick and fully parameterized absolute nodal coordinate formulation plate element, of
which the membrane and bending deformation effects are coupled. The GEFs are first derived for a fully anisotropic,
linearly elastic material, characterized by 21 independent material parameters. Using the same approach, the GEFs
are obtained for an orthotropic material, characterized by 9 material parameters. Furthermore, the analysis is extended
to the case of nonlinear elasticity; the GEFs are introduced for a nonlinear Cauchy-elastic material, characterized by
4 in-plane orthotropic material parameters. Numerical simulations are performed to validate the theory for statics and
dynamics to observe the anisotropic responses in terms of displacements, stresses and strains. The presented formula-
tions are suitable for studying the nonlinear dynamical behaviour of advanced elastic materials of an arbitrary degree
of anisotropy.

1. Introduction

Analyzing the nonlinear dynamical behaviour of complex engineering processes is becoming increasingly im-
portant, as the consideration of large deformations, the implementation of active external loadings, damping, friction
or contact effects together with advanced, nonlinear, constitutive laws and material anisotropy, have in the past two
decades put an emphasis on research in this field. Special large-deformation formulations were proposed to address
the problems of nonlinear dynamics that allow the implementation of both the geometrical and material nonlinearities.
Among the most recently proposed formulations is the absolute nodal coordinate formulation (ANCF).

The ANCF has been implemented in many different areas of mechanics, such as in characterization of highly
nonlinear dynamical systems [29, 2, 9, 27], in studying contact problems [7, 11, 6], or even in the field of the digital
image correlation [15]. Established especially to deal with highly flexible structures, the main features of the ANCF
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are a constant mass matrix, zero centrifugal and Coriolis inertia forces and the possibility of exact rigid-body move-
ment modelling. Since the ANCF is based on the general continuum theory, the assumptions of the classical beam
and plate theories were systematically relaxed and more general finite elements were proposed [10, 1].

Among the element types, plate elements were also developed using 24, 36 or 48 nodal DOF. A thin-plate element
formulation using 36 nodal DOF was investigated in [21, 28], where the formulation of the element’s generalized
elastic forces (GEFs) was based on the classic Kirchhoff theory. Furthermore, Mikkola and Shabana [18] presented
a more general formulation of the plate with 48 nodal DOF, where the GEFs are obtained directly from the strain
energy without its partitioning to the membrane and bending contribution. The latter (continuum) formulation in-
cludes the coupling between the membrane and bending effects and is therefore suitable for the analysis of thick and
highly flexible systems, where the element’s performance is not affected by the high-frequency deformation modes.
Nevertheless, even though a variety of ANCF plates are developed, none of these formulations a priori considers the
effects of material anisotropy.

When defining the material model of the analyzed continuum, the authors dealing with the ANCF managed to
implement from basic, linearly elastic, to more advanced, nonlinear models. The latter include research done by
Jung et al. and Maqueda and Shabana [17], who analyzed a rubber-like material, described by the Neo–Hookean and
Mooney–Rivlin nonlinearly-elastic constitutive laws. Furthermore, Maqueda et al. [16] and Sugiyama et al. [25, 26]
did extensive research on implementing elasto-plasticity. All these formulations incorporate advanced constitutive
laws, yet the material is always assumed to be isotropic. In the ANCF, there seems to be a lack of research dealing with
the effects of material anisotropy on the dynamic response of the analyzed systems. In many engineering processes,
when dealing with laminated or composite plates, a consideration of anisotropy might be important. For example,
just recently Nada and El-Assal [19] introduced a piezoelectric, laminated, thin ANCF plate plate as a equivalent
single layer model. In addition, a real application dealing with a nonlinearly elastic and anisotropic material is the
stone-wool production proces, where the nonlinear dynamics of the primary fleece during the folding process on the
pendulum system is studied [14].

This research focuses on the effect of material anisotropy in the large-deformation analysis of highly flexible
homogeneous elastic materials undergoing finite deformations. For the finite element, a thick, continuum-based,
ANCF plate with 48 nodal DOF is studied, for which the GEFs are developed from the strain energy without its
partitioning to the membrane and bending contribution. To address the effects of anisotropy, a procedure for the
GEFs derivation is studied for a fully anisotropic (triclinic), linearly elastic material with 21 independent material
parameters. Using the same procedure a lower-order anisotropic material is also studied. The procedure is further
extended to the case of nonlinear elasticity; the GEFs for a nonlinear, orthotropic, Cauchy-elastic material are given.
For this case, the tangent elastic properties are defined in a way to be able to characterize the dynamical behaviour
using 4 independent material parameters.

Statical and dynamical numerical simulations are studied to validate the theory and show the anisotropic effects.
The free-vibration response of a real orthotropic polyimide material is first studied in terms of the displacement and
eigenfrequency analyses to assess the effects of the higher-frequency deformation modes. The second simulation deals
with a static and dynamic analysis of a thick, nonlinearly elastic and orthotropic ANCF plate under a gravitational
and external, time-dependent, vector-force loading. For the latter case, orientational material data is used to approach
the real response of the aforementioned stone-wool fleece.

The paper is organized as follows: In Section 2, the ANCF thick plate formulation and the dynamic equations of
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motion are summarized first. The derivation of the GEFs for the fully anisotropic material, the simplification for the
orthotropic materials and the extension to the nonlinear case are shown in Section 3. The numerical simulations and
results are presented in Section 4. The conclusions are given in Section 5.

2. Thick-plate dynamics

The thick ANCF plate element is a higher-order finite element [18], established in the framework of the general
continuum theory with no a priori imposed simplifications or linearizations. An element of this kind is able to undergo
finite rotation or deformation, it relaxes some of the assumptions used in the classic and Mindlin plate models [9] as
well as automatically satisfies the objectivity requirements. Furthermore, the continuity of the displacement gradients
between the nodal points of the element can be assured by using the appropriate shape functions. In the following, a
short summary of the thick ANCF plate element is given in terms of the general formulation and the establishment of
the equations of motion. For a detailed information the interested reader is referred to [18].

2.1. Thick ANCF plate formulation

The thick ANCF plate element possesses 48 nodal degrees of freedom (DOF). Even though designated as a plate,
the element is treated as an isoparametric 3D solid body, for which the configuration is described in the Lagrangian
formulation by [18]:

r(x, t) = S(x) · e(t) , (1)

where x is the initial position field in the local frame and r is the current position field in the global frame, respectively
(Fig. 1):

x = [x1 x2 x3]T , (2)

r = [r1 r2 r3]T , (3)

and S is the global shape function matrix:

S =

S 1 0 0 S 2 0 0 S 16 0 0
0 S 1 0 0 S 2 0 · · · 0 S 16 0
0 0 S 1 0 0 S 2 0 0 S 16

 , (4)

with S i given in the Appendix. The influence of the element’s thickness should be considered carefully; for a relatively
thin element, oscillations of the gradients in the thickness direction r,x3 may occur that lead to an increased numerical
stiffness. Thin-plate formulations should be considered in that case, where the r,x3 gradients and the corresponding
shape functions S k are eliminated from the formulation.

The vector e consists of the global nodal position coordinates and the nodal position-vector gradients:

e =
[
e1 e2 e3 e4

]T
, (5)

ei =

riT
(
∂ri

∂x1

)T (
∂ri

∂x2

)T (
∂ri

∂x3

)T , i = 1, 2, 3, 4 , (6)
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Figure 1: Parametrization of a thick ANCF plate element

which are used to define the matrix of the position-vector gradients:

J =
∂r
∂x

=

S1,x1 S1,x2 S1,x3

S2,x1 S2,x2 S2,x3

S3,x1 S3,x2 S3,x3

 · e , (7)

where Si,xk is the differentiation of the i-th row of the matrix S with respect to the k-th initial coordinate in the element’s
local frame. In the ANCF, the nonlinear Green–Lagrange strain tensor is defined for the deformation measure [18],
written in vector form as:

ε =
1
2

[
JTJ − I

]
≡ [ε11 ε22 ε33 ε12 ε13 ε23]T . (8)

Note that the shear components in (8) are written as in [23], i. e., they are not multiplied by 2. Considering (1), the
components εi j can be defined as:

ε11 =
1
2

(
eT b1 · e − 1

)
, ε22 =

1
2

(
eT b2 · e − 1

)
,

ε33 =
1
2

(
eT b3 · e − 1

)
, ε12 =

1
2

eT b4 · e ,

ε13 =
1
2

eT b5 · e , ε23 =
1
2

eT b6 · e ,

(9)

4



where:

b1 = S1,x1 ⊗ S1,x1 + S2,x1 ⊗ S2,x1 + S3,x1 ⊗ S3,x1 ,

b2 = S1,x2 ⊗ S1,x2 + S2,x2 ⊗ S2,x2 + S3,x2 ⊗ S3,x2 ,

b3 = S1,x3 ⊗ S1,x3 + S2,x3 ⊗ S2,x3 + S3,x3 ⊗ S3,x3 ,

b4 = S1,x1 ⊗ S1,x2 + S2,x1 ⊗ S2,x2 + S3,x1 ⊗ S3,x2 ,

b5 = S1,x1 ⊗ S1,x3 + S2,x1 ⊗ S2,x3 + S3,x1 ⊗ S3,x3 ,

b6 = S1,x2 ⊗ S1,x3 + S2,x2 ⊗ S2,x3 + S3,x2 ⊗ S3,x3 ,

(10)

with the outer product “⊗” of two vectors. It should be noted at this point that the matrices b1, b2 and b3 are symmetric,
whereas b4, b5 and b6, are not. By differentiating the strain energy with respect to the vector of nodal coordinates,
one obtains the vector of generalized elastic forces (GEFs) Qe, written with Green–Lagrange strains [18]:

Qe(e) =
∂

∂e

(
1
2

∫
V
σP2 : ε dV

)
, (11)

where V is the reference volume and σP2 is the 2nd Piola-Kirchhoff stress tensor.

2.2. Equations of motion

The continuum formulation of the thick ANCF plate, presented in Section 2.1, is incorporated into the formulation
of the dynamic equations of motion. The background of the derivation of the equations of motion is well explained in
many other publications, e.g. [22], and is only briefly summarized here to keep the paper focused.

In the ANCF, the absolute velocity vector ṙ is linear in nodal velocities ė:

ṙ = S · ė . (12)

The kinetic energy of the thick plate is therefore defined using (12):

Ek =
1
2

∫
V
ρ ṙTṙ dV =

1
2

ėT M ė , (13)

where M is the constant mass matrix of the element:

M = ρ

∫
V

STS dV , (14)

with density ρ. Since the mass matrix is constant, the centrifugal and Coriolis inertia forces are equal to zero. Based
on the principle of virtual work, this leads to a simplified form of the equations of motion [22]:

M ë = Qf −Qe , (15)

where Qf is the vector of the generalized external and damping nodal forces.
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For our purpose, we will deal with both the external time-dependent force Qf,ex and the damping force Qf,d. In the
case of the time-dependent vector force F(t) at an arbitrary point “P” on the element (Fig. 1), the generalized nodal
force is calculated as:

Qf,ex = ST(xP) · F . (16)

Further, the generalized damping force Qf,d is summarized according to [28]:

Qf,d =

∫
V

ST · f (ṙ) dV , (17)

where f is the external, nonlinear damping force, representing, e.g., the air resistance:

f (ṙ) = α1 ṙ + α2 ṙ |ṙ| , (18)

with α1 and α2 as the parameters of the linear and quadratic damping term. By introducing (12) into (17), the
generalized damping force is written as:

Qf,d = α1

∫
V

STS dV · ė + α2

∫
V

STS |S · ė| dV · ė . (19)

When dealing with constraint dynamics, the algebraic kinematic constraint equations are introduced into (15). For
our purpose, only the globally fixed joints and the time-independent joints between the two bodies will be considered.
For the i-th body at the k-th node the fixed joint constraints are written as:

rk
i = S

(
xk

i
)
· ei = ck

i , (20)

∂rk
i

∂xl
=
∂S
∂xl

(
xk

i
)
· ei = dk

il , l = 1, 2, 3 , (21)

where ck
i and dk

il are constant vectors. The joint between the i-th and j-th body at the k-th node is further formulated
as:

S
(
xk

i
)
· ei = S

(
xk

j
)
· e j , (22)

∂S
∂xl

(
xk

i
)
· ei =

∂S
∂xl

(
xk

j
)
· e j , l = 1, 2, 3 . (23)

Based on Eqs. (20)-(23) a vector of constraint equations C is assembled [22] and differentiated with respect to the
nodal variables to obtain the Jacobian matrix of kinematic constraints Ce = ∂C/∂e. By employing the technique of
Lagrange multipliers, the equations of motion for a constrained, flexible, multibody system can finally be expressed
in a compact form as [22]: [

M CT
e

Ce 0

] [
ë
λ

]
=

[
Qe + Qf

Qd

]
, (24)
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where λ is the vector of Lagrange multipliers and Qd vector, which consists of the first and second time derivatives
of the kinematic constraints. The Lagrange multipliers can be conveniently eliminated from (24), based on which the
vector of nodal accelerations ë can be derived as [13]:

ë = Hee ·
(
Qe + Qf

)
+ Heλ ·Qd , (25)

where:

Hee = M−1 −M−1CT
e
(
Ce M−1CT

e
)−1

Ce M−1 , (26)

Heλ = M−1CT
e

(
Ce M−1CT

e
)−1

. (27)

Eq. (25) is finally integrated forward in time to obtain the velocities and coordinates (ė, e) [12]. It should be noted
at this point that the Eqs. (26) and (27) require a calculation of the inverse matrix, which may, depending on the
number of kinematic constraints, significantly affect the computational cost. However, in our case, the employed
joints introduce kinematic constraints that are linear in terms of nodal variables. The Jacobian matrix Ce is therefore
constant, based on which the inverse matrices in (26) and (27) are calculated only once before the time integration.

The issue regarding the satisfaction of the kinematic constraints over time also needs to be mentioned. Since the
kinematic constraints enter the equations of motion (24) in a differentiated form, the original constraints are violated
to a degree that corresponds to the accuracy of the numerical integration. When using this approach, it is therefore
necessary to examine the satisfaction of the constraints over the simulation time. If the accumulated errors are found
to be unacceptable, coordinate partitioning techniques can be employed to circumvent this difficulty [22].

The presented computational procedure is general and suitable for analyses of dynamical systems regardless of
the imposed material properties. We use it to study the dynamics of the thick ANCF plates with regard to the material
anisotropy.

3. Generalized elastic forces for anisotropic materials

A procedure for the anisotropic GEFs (11) derivation is now presented. The GEFs depend on the element’s nodal
coordinates and hold all the information about the material of the continuum. Even in the case of linear elasticity,
the GEFs are nonlinear in the nodal coordinates e and vary in complexity with regard to the number of independent
material parameters in the elasticity matrix E. To keep the procedure general, the derivation of the GEFs is shown for
the case of a fully anisotropic material. The simplifications in terms of the number of independent elasticity matrix
coefficients can be made later in order to obtain materials with a lower anisotropy order. In the following we presume
that the principal material directions coincide with the local element’s frame and the inertial frame, and therefore no
transformation of material parameters is necessary.

In the case of fully anisotropic linear elasticity, the elasticity matrix EA is described by 21 independent coefficients
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[20]:

EA =



c11 c12 c13 c14 c15 c16
c12 c22 c23 c24 c25 c26
c13 c23 c33 c34 c35 c36
c14 c24 c34 c44 c45 c46
c15 c25 c35 c45 c55 c56
c16 c26 c36 c46 c56 c66


, (28)

and it is constant over the whole finite element. It should be noted here that the matrix EA does not depend on strain
and is therefore constant even in the case of large deformations. This may not be an appropriate material law in some
cases since the material may reach the limit of proportional elasticity, i. e., the tangent elastic properties may start
to differ from the original elastic properties due to the effect of large deformations. However, for the sake of the
simplicity of the following derivation it is presumed that the linear relation between the strain and the stress holds
regardless of the amount of deformation.

The coefficients ci j have a physical interpretation of being either uniaxial stiffnesses or generalized versions of the
Poisson ratios, which measure the lateral contractions of a uniaxial tensile specimen. By using Eq. (28) to define the
2nd Piola–Kirchhoff stress vector:

σP2 = EA · ε , (29)

the integral in (11) is written as a sum of 6 integrals:

QA
e =

6∑
i=1

IA
i , (30)

where, following the vector notation of (11):

IA
1 =

1
2

∫
V

∂

∂e
(C1 · ε11) dV , IA

2 =
1
2

∫
V

∂

∂e
(C2 · ε22) dV ,

IA
3 =

1
2

∫
V

∂

∂e
(C3 · ε33) dV , IA

4 =
1
2

∫
V

∂

∂e
(C4 · ε23) dV ,

IA
5 =

1
2

∫
V

∂

∂e
(C5 · ε13) dV , IA

6 =
1
2

∫
V

∂

∂e
(C6 · ε12) dV ,

(31)

with:
Ci = ci1 ε11 + ci2 ε22 + ci3 ε33 + ci4 ε23 + ci5 ε13 + ci6 ε12 , i = 1, . . . , 6 . (32)

For different material groups, the variables Ci depend on the number of elastic constants in (28). To save space, the
development of the integral IA

1 is shown here, only. The other integrals IA
i are developed in the same way. First, we

write IA
1 as a sum of 6 stiffness sub-integrals:

IA
1 =

1
2

∫
V

∂

∂e
(C1 · ε11) dV =

6∑
i=1

IA
1.i , (33)
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where:

IA
1.1 =

c11

2

∫
V

∂

∂e
(ε11 ε11) dV , IA

1.2 =
c12

2

∫
V

∂

∂e
(ε22 ε11) dV ,

IA
1.3 =

c13

2

∫
V

∂

∂e
(ε33 ε11) dV , IA

1.4 =
c14

2

∫
V

∂

∂e
(ε23 ε11) dV ,

IA
1.5 =

c15

2

∫
V

∂

∂e
(ε13 ε11) dV , IA

1.6 =
c16

2

∫
V

∂

∂e
(ε12 ε11) dV ,

(34)

and analyze them individually. By considering the relations (9) and (10), integral IA
1.1 is equal to:

IA
1.1 =

c11

8

∫
V

∂

∂e
[(

eT b1 · e
) (

eT b1 · e
)
− 2

(
eT b1 · e

)
+ 1

]
dV =

= IA
1.1a + IA

1.1b ,

(35)

where:

IA
1.1a =

c11

8

∫
V

∂

∂e
[(

eT b1 · e
) (

eT b1 · e
)]

dV ,

IA
1.1b = −

c11

8

∫
V

∂

∂e
(
eT b1 · e

)
dV .

(36)

Using the relation [4]:
∂

∂e
(
eT bi · e

)
= eT

(
bT

i + bi
)
, (37)

the differentiation with respect to e is:

∂

∂e
[(

eT bi · e
) (

eT b j · e
)]

=(
∂

∂e
(
eT bi · e

)) (
eT b j · e

)
+

(
eT bi · e

) (
∂

∂e
(
eT b j · e

))
=

=
(
eT

(
bT

i + bi
)) (

eT b j · e
)

+
(
eT bi · e

) (
eT

(
bT

j + b j
))
.

(38)

Considering also eT bi = (bi · e)T = bT
i · e [4], and the fact that the matrices bi for i = 1, 2, 3 are symmetric, Eq. (38)

is written, factoring out e:

∂

∂e
[(

eT bi · e
) (

eT b j · e
)]

= 2
[
bT

i

(
eT b j · e

)
+

(
eT b j · e

)
bi

]
· e , (39)

thus:

IA
1.1a =

c11

4

∫
V

[
bT

1

(
eT b1 · e

)
+

(
eT b1 · e

)
b1

]
· e dV ,

IA
1.1b = −

c11

4

∫
V

bT
1 · e dV ,

(40)
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so the integral (35) takes the final form:

IA
1.1 =

c11

4

∫
V

[
bT

1

(
eT b1 · e − 1

)
+

(
eT b1 · e

)
b1

]
· e dV . (41)

Similar to (35), we write the integral IA
1.2:

IA
1.2 =

c12

8

∫
V

∂

∂e
[(

eT b2 · e
) (

eT b1 · e
)
−

(
eT b2 · e

)
−

(
eT b1 · e

)
+ 1

]
dV =

= IA
1.2a + IA

1.2b + IA
1.2c ,

(42)

where:

IA
1.2a =

c12

8

∫
V

∂

∂e
[(

eT b2 · e
) (

eT b1 · e
)]

dV ,

IA
1.2b = −

c12

8

∫
V

∂

∂e
(
eT b2 · e

)
dV ,

IA
1.2c = −

c12

8

∫
V

∂

∂e
(
eT b1 · e

)
dV ,

(43)

which after some manipulation leads to the final form of IA
1.2:

IA
1.2 =

c12

4

∫
V

[
bT

2

(
eT b1 · e − 1

)
+

(
eT b2 · e − 1

)
b1

]
· e dV . (44)

In the same way as for (35) and (42), we write the integral IA
1.3:

IA
1.3 =

c13

4

∫
V

[
bT

3

(
eT b1 · e − 1

)
+

(
eT b3 · e − 1

)
b1

]
· e dV . (45)

The development of the integrals IA
1.4− IA

1.6 follows the same procedure as above, the derivations are only modified
on account of the asymmetry of the matrices bi for i = 4, 5, 6. For the sake of brevity, only the final forms are stated
here; for k = 4, 5, 6, we have:

IA
1.k =

c1k

8

∫
V

[(
b10−k + bT

10−k

) (
eT b1 · e − 1

)
+ 2

(
eT b10−k · e

)
b1

]
· e dV . (46)

The integrals IA
1.1 − IA

1.6 are finally summed together to form the stiffness integral (33):

IA
1 =

1
4

∫
V


 3∑

i=1

c1i bT
i +

6∑
i=4

c1i
(
b10−i + bT

10−i

) (eT b1 · e − 1
)
+

+

 3∑
i=1

c1i
(
eTbi · e

)
+

6∑
i=4

c1i
(
eTb10−i · e

)
− c12 − c13

 b1

 · e dV .

(47)
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The derivation of the stiffness integrals IA
2 − IA

6 is analogous, as shown above. We write:

IA
k =

6∑
i=1

IA
k.i , k = 2, . . . , 6 , (48)

where the IA
k for k = 2, 3 are, considering ci j = c ji:

IA
k =

1
4

∫
V


 3∑

i=1

cki bT
i +

6∑
i=4

cki
(
b10−i + bT

10−i

) (eT bk · e − 1
)
+

+

 3∑
i=1

cki
(
eTbi · e

)
+

6∑
i=4

cki
(
eTb10−i · e

)
− ck1 − ck3

 bk

 · e dV ,

(49)

and for k = 4, 5, 6:

IA
k =

1
4

∫
V


 3∑

i=1

2 cki bT
i +

6∑
i=4

2 cki
(
b10−i + bT

10−i

) (eT b10−k · e
)
+

+

 3∑
i=1

cki
(
eTbi · e

)
+

6∑
i=4

cki
(
eTb10−k · e

) (b10−k + bT
10−i

)
−

−bT
10−k

3∑
i=1

cki

 · e dV .

(50)

The vector of the anisotropic GEFs (30) is equal to the sum of stiffness integrals (47)-(50).
If the analyzed material contains additional symmetries, the described procedure is simplified on account of there

being fewer coefficients ci j. In the following, two special cases of the GEFs of a lower-order anisotropy material are
presented: the first is for a linearly elastic orthotropic material with 9 independent parameters, and the second for a
nonlinearly elastic orthotropic material with 4 independent parameters.

3.1. Linearly elastic orthotropic material
Among engineering materials, composites frequently possess mutually perpendicular symmetry planes, i.e., they

express orthotropic behaviour. Shear strains are not present by their uniaxial deformation, since the elasticity matrix
(28), with superscript “O” denoting orthotropy, takes the form [20]:

Eo =



co
11 co

12 co
13 0 0 0

co
12 co

22 co
23 0 0 0

co
13 co

23 co
33 0 0 0

0 0 0 co
44 0 0

0 0 0 0 co
55 0

0 0 0 0 0 co
66


, (51)
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where 9 independent coefficients are (using the Young moduli Ei and the Poisson ratios νi j):

co
11 = E1 (1 − ν23 ν32) γo , co

44 = E1/ (1 − ν12) ,

co
22 = E2 (1 − ν13 ν31) γo , co

55 = E2/ (1 − ν13) ,

co
33 = E3 (1 − ν21 ν12) γo , co

66 = E3/ (1 − ν23) ,

co
12 = co

21 = E1 (ν21 + ν31 ν23) γo = E2 (ν12 + ν32 ν12) γo ,

co
13 = co

31 = E1 (ν31 + ν21 ν32) γo = E3 (ν13 + ν12 ν23) γo ,

co
23 = co

32 = E2 (ν32 + ν12 ν31) γo = E3 (ν23 + ν21 ν13) γo ,

(52)

with:
γo =

1
1 − ν12 ν21 − ν23 ν32 − ν31 ν13 − 2 ν21 ν32 ν13

. (53)

By following the same procedure as in Section 3, the orthotropic stiffness integrals (31) take the form:

Io
1 =

1
4

∫
V

[
2 co

11 bT
1

(
eT b1 · e − 1

)
+ co

12

(
bT

2

(
eT b1 · e − 1

)
+

(
eT b2 · e − 1

)
b1

)
+

+co
13

(
bT

3

(
eT b1 · e − 1

)
+

(
eT b3 · e − 1

)
b1

)]
· e dV .

Io
2 =

1
4

∫
V

[
co

12

(
bT

1

(
eT b2 · e − 1

)
+

(
eT b1 · e − 1

)
b2

)
+ co

23

(
bT

3

(
eT b2 · e − 1

)
+

+
(
eT b3 · e − 1

)
b2

)
+ 2 co

22 bT
2

(
eT b2 · e − 1

)]
· e dV .

Io
3 =

1
4

∫
V

[
co

13

(
bT

1

(
eT b3 · e − 1

)
+

(
eT b1 · e − 1

)
b3

)
+ co

23

(
bT

2

(
eT b3 · e − 1

)
+

+
(
eT b2 · e − 1

)
b3

)
+ 2 co

33 bT
3

(
eT b3 · e − 1

)]
· e dV ,

(54)

and for k = 4, 5, 6:

Io
k =

1
8

∫
V

co
kk

[(
bk + bT

k

) (
eT bk · e

)
+

(
eT bk · e

) (
bk + bT

k

)]
· e dV . (55)

The vector of the orthotropic GEF Qo is finally equal to the sum of the orthotropic stiffness integrals (54), (55):

Qo
e =

6∑
i=1

Io
i . (56)

3.2. Nonlinear Cauchy-elastic orthotropic material

The formulation of the orthotropic GEFs derivation (56) is now extended to a special case of nonlinear orthotropic
elasticity. First, the number of independent material parameters cN

i j is reduced from 9 to 4. They are then used to

12



define the following stress-strain relations:

σP2,11 = cN
11

(
ε11 + D1 ε

2
11

)
+ cN

12 (ε22 + ε33) , (57)

σP2,22 = cN
22

(
ε22 + D2 ε

2
22

)
+ cN

12 (ε11 + ε33) , (58)

σP2,33 = cN
22 ε33 + cN

12 (ε11 + ε22) , (59)

σP2,i j = cN
44 εi j , i, j = 1, 2, 3, i , j , (60)

with Dk as constants that characterize nonlinear behaviour in normal directions. In this way, the X1-X2 in-plane
parameters are used to characterize the material in direction X3. By doing so, a dynamical characterization of a
variety of advanced materials, characterized by two-dimensional, full-field measurements [3], is made possible. It
should be noted at this point that the used plate element produces zero strains for the arbitrary rigid-body movement,
as shown by Mikkola and Shabana in [18]. The presented Cauchy-elastic constitutive law (57)-(60) therefore satisfies
the objectivity requirements, since for the rigid-body movement the stresses are also zero.

The elastic properties of the nonlinearly elastic material are strain-dependent. They are obtained as the stress
derivatives with respect to the Green–Lagrange strains:

cN
i j =

∂σP2,i j

∂εi j
, (61)

and are incorporated into the nonlinear GEFs calculation during the time integration.
The stiffness integrals for the nonlinearly elastic and orthotropic material Io

N are derived, using the same procedure
as in Section 3. For the sake of brevity, only the final form of Io

N is given here, as:

Io
N =

6∑
i=1

Io
Ni , (62)

where the partial stiffness integrals are:

Io
N1 =

1
4

∫
V

[(
c11 bT

1 + c12
(
bT

2 + bT
3

)) (
eTb1 · e − 1

)
+

(
c11

(
eTb1 · e − 1

)
+

+c12
(
eTb2 · e + eTb3 · e − 2

)
+

3 c11 D1

2

(
eTb1 · e − 1

)2 )
b1

]
· e dV ,

(63)

Io
N2 =

1
4

∫
V

[(
c22 bT

2 + c12
(
bT

1 + bT
3

)) (
eTb2 · e − 1

)
+

(
c22

(
eTb2 · e − 1

)
+

+c12
(
eTb1 · e + eTb3 · e − 2

)
+

3 c22 D2

2

(
eTb2 · e − 1

)2 )
b2

]
· e dV ,

(64)

Io
N3 =

1
4

∫
V

[
co

12

(
bT

1

(
eT b3 · e − 1

)
+

(
eT b1 · e − 1

)
b3 + bT

2

(
eT b3 · e − 1

)
+

+
(
eT b2 · e − 1

)
b3

)
+ 2 co

22 bT
3

(
eT b3 · e − 1

)]
· e dV ,

(65)
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and Io
Ni for i = 4, 5, 6, take the form like (55), with ckk = c44.

The integrals (47)-(50), (54)-(55) and (63)-(65) are evaluated numerically [18]. In this research, the three-
dimensional Gaussian quadrature is employed [5]. It should be noted here that the number of points for integration
should be chosen carefully, since it directly affects the computational cost during the time integration.

4. Numerical experiments

Several numerical simulations are studied here to validate the theory and to show the dynamic response of an
anisotropic material. All the simulations analyze a thick plate structure of dimensions 1.0 × 1.0 × 0.075 m (Fig. 2).
The plate is discretized by 4, 16, 25 or 36 finite elements that are interconnected using the kinematic constraints (20)–
(23). All the analyses were performed on a 2.93-GHz processor PC using Matlab R©. For the dynamical simulations,
the Adams–Bashforth–Moulton “predictor–corrector” method with a variable time step was employed for the time
integration. The computational times are reported in Table 3.

4.1. Free vibration test

The purpose of this simulation is to show the free-vibration response of a real, linearly elastic, orthotropic, poly-
imide material, characterized by 9 independent material parameters. In [8], the 9 independent, compliance-material
parameters of a Kapton E R© polyimide with ρ = 1366 kg/m3, are determined. By using these parameters with (52),
the orthotropic elasticity matrix (51) is obtained by inversion, as:

Eo =



10.44 5.824 5.908 0 0 0
5.824 9.382 5.522 0 0 0
5.908 5.522 15.05 0 0 0

0 0 0 1.970 0 0
0 0 0 0 0.490 0
0 0 0 0 0 0.270


GPa , (66)

based on which the GEF vector is assembled in the form of (56). The model for the free-vibration analysis is shown
in Fig. 2. The impact vector-force F(t) is applied at the node “Q2”, as:

F(t) =

{
[0, 0, −50]T kN ; t < 0.0075
0 ; 0.0075 ≥ t > 0.2 .

, (67)

for 0.2 s of simulation time.
Fig. 3 shows the undamped response of the plate in comparison to the numerical solution, obtained by Pro/Mechanica

using 603 linearly elastic tetrahedrons. The solution obtained by only 4 ANCF elements is found to be slightly stiffer
in comparison to the standard FE solution. However, the use of a denser ANCF grid improves the convergence.

The eigenvalue analysis was also performed to assess the effects of the higher vibration modes. For the impact
excitation (Fig. 2), the Fourier transform was employed to obtain the amplitude-frequency spectrum for the point “Q2”
response. In Fig. 4, a comparison of the spectra is shown for the 36-elements ANCF solution against the standard FE
solution. The first 8 natural frequencies are also marked. They were identified using the modal analysis and are
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Figure 2: A clamped orthotropic plate; excitation and damping
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Figure 3: The undamped response of the point “Q2”

reported in Table 1. In our case, the first mode is dominant and is well captured by the ANCF elements. Further, up to
100 Hz the frequency response is in good agreement with the standard FE solution. However, in the higher-frequency
range the (continuum-based) ANCF elements perform poorly, since they are known to suffer from locking effects
[24].

When using the formulation of the equation of motion (24, 25), the satisfaction of the kinematic constraints over
time needs to be checked. Table 2 shows the accumulated errors at the end of the simulation time. The results are
presented for the point Q1, which connects 4 ANCF elements. The reference values are taken to be those of element
“1”. The difference of order 10−9 or less for all cases is found to be acceptable for our purpose and justifies the used
computational procedure.

To simulate a real dynamical problem, the implementation of the gravitational force and the external, nonlinear
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Table 1: The natural frequencies of the clamped plate up to 500 Hz, obtained with Pro/Mechanica modal analysis
Mode 1 2 3 4 5 6 7 8 9

Natural frequency [Hz] 24.9 29.2 94.3 198.5 207.7 308.4 315.2 495.0 499.3

10
-2

10
-1

10
-3

10
-4

10
-5

10
-6

log( ) [Hz]f

log( (Q )|)|r3 2 [m]

10
1

10
2

f02f01

f03 f04 f05 f06 f07 f08

ANCF (36 el.) Pro/M

Figure 4: The amplitude-frequency spectrum for the point “Q2” response

damping force f(ṙ), defined according to Section 2, is also shown for the case of the impact excitation (Fig. 2). The
linear and quadratic damping parameters are arbitrarily chosen as α1 = 530 kg · s−1m−2 and α2 = 3610 kg · m−3.
The dynamic response of the plate is shown in Fig. 5, where the global vertical positions r3 are plotted for the points
“Q1” and “Q2”. Due to the external damping the displacement amplitudes decrease with time. The relatively long
computational times (Table 3) are due to the material stiffness and its effect on the integration of (25); in the ANCF,
the continuum-based elements are known to exhibit stiff behaviour due to the relatively high material stiffness. For
this simulation the 2-point Gaussian quadrature was used.

4.2. Large deformation of a highly flexible material

The aim of the following simulations is to show the static and dynamic responses of the nonlinearly elastic and
orthotropic ANCF plate element. Such an element should be able to describe the nonlinear dynamic behaviour of
the aforementioned stone-wool fleece; a highly flexible and anisotropic material. The GEF vector (62), characterized
by 4 orthotropic material parameters and nonlinearly elastic stress–strain relations (57)-(58), is used for this analysis.
Since the real material parameters of the stone-wool fleece are at the present time unknown, orientational values are
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Table 2: Satisfaction of kinematic constraints at the end of simulation time t = 0.2 at point Q1 (Fig. 2)
t = 0.2 s

(
ri

1 − r1
1

)
[m]

(
ri

2 − r1
2

)
[m]

(
ri

3 − r1
3

)
[m]

(
ri

1,x1
− ri

1,x1

) (
ri

2,x1
− r1

2,x1

) (
ri

3,x1
− r1

3,x1

)
e2

Q1
− e1

Q1
-0.0370 0.1980 0.3700 -1.3050 1.6820 1.4690

e3
Q1
− e1

Q1
-4.9960 0.0010 0.0020 0.0010 0.0100 0.0300 ·10−9

e4
Q1
− e1

Q1
-5.0010 5.0080 0.0850 0.0130 -0.0010 -0.0140(

ri
1,x2
− r1

1,x2

) (
ri

2,x2
− r2

2,x2

) (
ri

3,x2
− r1

3,x2

) (
ri

1,x3
− r1

1,x3

) (
ri

2,x3
− r1

2,x3

) (
ri

3,x3
− r1

3,x3

)
e2

Q1
− e1

Q1
-2.2690 -5.9450 5.4070 -0.2020 -4.8700 -1.4340

e3
Q1
− e1

Q1
-0.0040 -0.0040 0.0130 -0.1260 -0.0160 0.0010 ·10−9

e4
Q1
− e1

Q1
0.0000 -0.0050 0.2350 0.0170 -0.2410 -0.0020

0 0.05 0.1 0.15 0.2t [s]

r3 1(Q )
r3 2(Q )

[m
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Figure 5: Vertical displacement of points “Q1” and “Q2” during damped free vibration

used that roughly approach the real ones:

c11 = 30.4 · 104 Pa , c12 = 5.26 · 104 Pa , c22 = 9.41 · 104 Pa ,

c44 = 0.52 · 104 Pa , c33 = c22 , c55 = c66 = c44, c13 = c23 = c12 .
(68)

4.2.1. Static analysis
The static test consists of a simply supported plate with a vertical force applied at the middle surface node Q3

(Fig. 6). The accelerations and velocities vanish from the formulation, thereby defining the static equilibrium that is
solved for nodal coordinates employing the Newton-Raphson procedure. The validation of the presented element is
performed with the comparison against the linear solution, obtained with Pro/M. To induce small deformation, the
force is defined as Fs = 1 N. For a small deformation the ANCF solution should approach the commercial solution
when using small values for the nonlinearity parameters D1 = D2 = 10−5; the contribution of the quadratic strain
terms (57)-(58) is thereby neglected.
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Figure 6: Simply supported nonlinearly elastic plate for static analysis

In Figs. 7 and 8, the comparison of the vertical deflections is shown for the two surface curves (Fig. 6). The Pro/M
solution is obtained using 472 linearly elastic and orthotropic elements. In this case, small number of ANCF elements
is unable to adequately describe the localized middle-plate deflection; however, an increased number of elements is
observed to approach the standard FE solution. The orthotropic response is also clearly visible; due to the different
stiffnesses in X1 direction, the deflections towards the ends of curve 1 is also different in comparison to those of curve
2.

X [m]1
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Figure 7: Vertical deflection ∆r3 across the plate for curve 1 (Fig. 6)
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Figure 8: Vertical deflection ∆r3 across the plate for curve 2 (Fig. 6)

4.2.2. Large-deformation dynamical system
An example of nonlinear dynamic analysis is presented in the following using the element from Section 3.2. Fig. 9

shows the setup for a large-deformation simulation of a thick clamped plate that vibrates under the gravity and the
two time-dependent external forces F(t) = 750 t/s N. The external forces are applied symmetrically at the end-nodes
in the direction α = β = 45◦ and γ = 10◦ with respect to the inertial frame axes.

X3

X1

X2

a

b g

ab
g

F( )t

F( )t

g

s, e

a/2

Figure 9: A large-deformation test for a nonlinearly elastic and orthotropic material, characterized by 4 material parameters
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A total of 25 ANCF elements are used for the 1 s simulation time. The nonlinearity parameters are D1 = 0.02 and
D2 = 0.09. After 0.5 s and 1 s, the configurations of the plate are shown in Fig. 10, from which the large displacements
and strains are evident. To analyze the final configuration, the Cauchy stresses were calculated from 2nd Piola-
Kirchhoff stresses as σ = |J|−1JσP2 JT. In Figs. 11 and 12, the interpolated normal Cauchy stresses σ11 and σ22, and
normal Green–Lagrange strains ε11 and ε22, are shown for the upper and lower surface curves across the plate (Fig. 9).
The strains and stresses are both highly nonlinear, yet they confirm the expected response; the plate stretch prevails
in the X1 direction due to the own dead weight and is higher in the lower-surface curve. The stresses σ11 towards the
plate’s free end are also higher in comparison to σ22 due to the higher stiffness in direction X1. The stresses and strains
are both continuous across the elements’ nodes; however, they are discontinuous between the elements’ surfaces. In
Figs. 11 and 12, average values at elements’ interfaces are calculated, based on which the curves are fitted across the
plate.

Due to the relatively low overall material stiffness, the computational time is considerably less than for the pre-
vious simulations (Table 3). The 3-point Gaussian quadrature was used in this case for the evaluation of the stiffness
integrals.

X3X1

X2
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0.5
1.0

0
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[m]
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a) b)

Figure 10: The configuration of the orthotropic clamped plate under the external vector-force loading after: a) 0.5 s and b) 1 s
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Figure 11: The Green–Lagrange strains on the surface curves (Fig. 9), after 0.5 s

[kPa]s

0 0.2 0.4 0.6 0.8 1X [m]1

-60

-40

-20

0

20

40

60

80

100

120

11 3( =-  /2)x hs
22 3( =-  /2)x hs

22 3( =  /2)x hs
11 3( =  /2)x hs

Figure 12: The normal Cauchy stresses on the surface curves (Fig. 9), after 0.5 s
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Table 3: Computational times for all numerical examples
Linear orthotropy (Free vibration) Nonlinear orthotropy
undamped damped static dynamic

4 elements 1.1 h 2.7 h 0.4 min /

16 elements 5.1 h 8.3 h 4.0 min 13.8 min
25 elements 7.1 h 11.2 h 6.0 min 34.4 min
36 elements 10.9 h 23.2 h 17.5 min 49.2 min
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5. Conclusion

In this research, an implementation of the material anisotropy into the absolute nodal coordinate formulation
(ANCF) is investigated in terms of the generalized elastic forces (GEFs) of the elastic and homogeneous material
using the continuum-based, thick ANCF plate elements. To address the anisotropy, the derivation procedure of the
element’s GEF vector is presented for the most general case of a fully anisotropic material, characterized by 21
independent material parameters. By systematically reducing the number of independent coefficients in the elasticity
matrix, the same procedure is used to define two GEF vectors for materials of lower-order anisotropy. Specifically, a
GEF vector for a linearly elastic, orthotropic material, characterized by 9 independent parameters is given first, and
then further extended to the special case of a nonlinear, Cauchy-elastic orthotropic material. For the latter case, the
material is characterized by the 4 independent in-plane material parameters.

The theory validation and the anisotropic effects are presented with numerical simulations. The displacement and
eigenfrequency analyses are performed for the free-vibration test of the clamped plate, made of a real, linearly elastic
and orthotropic polyimide material. The convergence and satisfaction of the kinematic constraints over time are also
studied for this case. The static and dynamic analyses of a highly flexible, Cauchy-elastic and orthotropic material are
also performed. To observe the anisotropic responses, the convergence and results of these simulations are presented
in terms of the displacements, stresses and strains.

6. Appendix

The element shape-function matrix S is defined as:

S = [S 1 I, S 2 I, . . . , S 16 I] , (69)
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where I is a 3 × 3 identity matrix, and:

S 1 = −(ξ − 1) (η − 1) (2 η2 − η + 2 ξ2 − ξ − 1) ,

S 2 = −a ξ (ξ − 1)2 (η − 1) ,

S 3 = −b η (η − 1)2 (ξ − 1) ,

S 4 = h ζ (ξ − 1) (η − 1) ,

S 5 = ξ (2 η2 − η − 3 ξ + 2 ξ2) (η − 1) ,

S 6 = −a ξ2 (ξ − 1) (η − 1) ,

S 7 = b ξ η (η − 1)2 ,

S 8 = −h ξ ζ (η − 1) ,

S 9 = −ξ η (1 − 3 ξ − 3 η + 2 η2 + 2 ξ2) ,

S 10 = a ξ2 η (ξ − 1) ,

S 11 = b ξ η2 (η − 1) ,

S 12 = h ζ ξη ,

S 13 = η (ξ − 1) (2 ξ2 − ξ − 3 η + 2 η2) ,

S 14 = a ξ η (ξ − 1)2 ,

S 15 = −a η2 (ξ − 1) (η − 1) ,

S 16 = −h η ζ (ξ − 1) , ξ = x1/a, η = x2/b , ζ = x3/h ,

where a, b and h are the length, width and height of the element, respectively. The presented shape function S ensures
positions and position-vector gradients’ continuity at the nodal points; however, it does not ensure the gradients’
continuity at the element’s interface.
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